Global analysis of Organic Rankine Cycles integrating local CFD simulations and uncertainty

Pietro Marco Congedo*, Jean-Paul Thibault**, Christophe Corre** Gianluca Iaccarino***

*INRIA Bordeaux Sud-Ouest (BACCHUS Team) **LEGI-Grenoble *** Stanford University

September 22nd

ORC 2011 First International Seminar on ORC Power Systems

PM Congedo (INRIA Bordeaux)

Global/local stochastic ORC

Local CFD analysis

• Accurate CFD solver for dense-gas flows in a turbine cascade^{*a*} and post-processing of CFD outputs for cycle performance analysis

 $^a\mathrm{P.M.}$ Congedo et~al, Numerical investigation of dense-gas effects in turbomachinery, Computers & Fluids 49 (2011) 290-301

Limitation of the available local CFD analysis

• CFD simulations and turbine design should be performed during cycle design

 \rightarrow integration of a **local** analysis (during the expansion stage) into the **global** cycle analysis

Other limitations of the available local CFD analysis

- multiple (physical and modeling) sources of uncertainty exist : operating conditions, heat source temperature, thermodynamics ...
 - \rightarrow must be taken into account for **robust design** and **predictive** simulation
 - \rightarrow need for an efficient stochastic method to propagate uncertainty

= non-intrusive polynomial chaos^{*a*}

^aP.M. Congedo *et al*, Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties, *Comput. Methods Appl. Mech. Engrg. 200 (2011)*, 216-232

- Step 1 : coupling UQ tools and local CFD approach
- Step 2 : extending UQ to the whole cycle \rightarrow mean value and standard deviation of performance indexes are made available
- Today's presentation focused on Step 1 \rightarrow robust analysis of a syloxane flow in a turbine cascade
- Detailed perspectives provided for Step 2

- Cell-centered third-order finite volume formulation
- Accommodating an arbitrary EoS (here PRSV) with uncertain parameters
- Non-reflecting (characteristic-based) inlet & outlet boundaries with fluctuating inlet conditions
- Wall slip condition using multi-D linear extrapolation from interior points to calculate the wall pressure

Mathematical formulation

• Consider the computational problem for an output of interest $u(\mathbf{y}, \boldsymbol{\xi}(\boldsymbol{\omega}))$

$$\mathcal{L}(\mathbf{y}, \boldsymbol{\xi}(\boldsymbol{\omega}); u(\mathbf{y}, \boldsymbol{\xi}(\boldsymbol{\omega}))) = \mathcal{S}(\mathbf{y}, \boldsymbol{\xi}(\boldsymbol{\omega})), \tag{1}$$

 \mathcal{L} and \mathcal{S} defined on $D \times T \times \Xi$, with $D \subset \mathbb{R}^d$, $d \in \{1, 2, 3\}$, and $T \subset \mathbb{R}$. $\boldsymbol{\omega}$ denotes events in the complete probability space (Ω, \mathcal{F}, P) with $\mathcal{F} \subset 2^{\Omega}$ the σ algebra of subsets of Ω and P a probability measure.

 The objective of uncertainty propagation is to find the probability distribution of u(y, ξ) and its statistical moments μ_{u_i}(y) given by

$$\mu_{\mathbf{u}_{i}}(\mathbf{y}) = \int_{\Xi} u(\mathbf{y}, \boldsymbol{\xi})^{i} f_{\boldsymbol{\xi}}(\boldsymbol{\xi}) \mathrm{d}\boldsymbol{\xi}.$$
 (2)

Mathematical formulation

A local UQ method computes these weighted integrals over parameter space Ξ as a summation of integrals over $n_{\rm e}$ disjoint subdomains $\Xi = \bigcup_{i=1}^{n_{\rm e}} \Xi_i$

$$\mu_{\mathbf{u}_{i}}(\mathbf{x},\mathbf{y},t) = \sum_{j=1}^{n_{\mathrm{e}}} \int_{\Xi_{j}} u(\mathbf{x},\mathbf{y},t,\boldsymbol{\xi})^{i} f_{\xi}(\boldsymbol{\xi}) \mathrm{d}\boldsymbol{\xi}.$$
(3)

- Various available methods : intrusive / non-intrusive
- Key issues : computational cost in high dimension, handling of mixed epistemic/aleatory uncertainty
- \bullet Present work : use of a non-intrusive ${\bf Polynomial}\ {\bf Chaos}\ {\bf Method}$
- Epistemic uncertainty treated with a uniform pdf

Dense-gas ORC turbine

Peng-Robinson equation of state

• Thermal equation of state

$$p = \frac{RT}{v-b} - \frac{a(T,\omega)}{v^2 + 2bv - b^2}.$$
 (4)

a and b substance-specific parameters and ω the fluid acentric factor. Power law for the ideal-gas isochoric specific heat

$$c_{v,\infty}(T) = c_{v,\infty}(T_c) \left(\frac{T}{T_c}\right)^n$$
(5)

• Eqs. 4 and 5 adimensionalized depend on 3 parameters \rightarrow Three (epistemic) uncertainties on ω (2%), $c_{v\infty}(T_c)$ and n (6%) (Uniform pdf)

Reviewing the sources of uncertainty

Three main sources of uncertainties (globally **eight** uncertainties)

- On the **inlet** turbine conditions (aleatory), *i.e.* inlet total temperature, T_{in}/T_c , and inlet total pressure, p_{in}/p_c (3.0%)
- On the **thermodynamic** model (epistemic), *i.e.* ω (2%), $c_{v\infty}$ and n (6%)
- On geometrical parameters (aleatory), *i.e.* angle of incidence β (3%), stagger angle θ (3%) and the blade thickness φ (2%)

Interaction between thermodynamics and specific effects of dense-gases close to the saturation curve UQ analysis is fundamental

Dense-gas ORC turbine

Parametric Study on inlet conditions T_{in}/T_c and p_{in}/p_c

• For each couple T_{in}/T_c , p_{in}/p_c , compute mean $\mu(PO)$ and variance $\sigma(PO)$ of Power Output retained as turbine performance index

 \rightarrow 1st contribution of stochastic analysis, see where performances are affected by large uncertainties

 \rightarrow 2nd contribution, ANOVA analysis through TSI indexes, computation of predominant uncertainties

- Remark lower limit for temperature given by the saturation curve limit
- Uncertainty region does not cross the maximal saturation curve

 p_{in}/p_c T_{in}/T_c 0.7-0.98 SCL-1.15

Table: Intervals of parametric study

Parametric Study on inlet conditions T_{in}/T_c and p_{in}/p_c

 $\mu(PO)$ and $\sigma(PO)$ for each uncertainty in the plan p-T

- **Performances** have to be studied in terms of $\mu(PO)$ and $\sigma(PO)$
- Where $\mu(PO)$ is higher also associated variance is high \rightarrow which condition should be chosen ?
- Industrial needs can rely on a prediction of confidence interval
 → robust design, First contribution of stochastic analysis

TSI contours for each uncertainty in the plan p-T TSI \rightarrow **contribution** (%) of each uncertainty to variance

- TSI associated to the uncertainty on p_{in} vary from 8% to 44% while from 39% to 83% for uncertainty on T_{in}
- For two geometrical parameters, θ and ϕ , TSI vary from 7% to 25% and from 0.7% to 2.9%

TSI contours for each uncertainty in the plan p-T

- TSI associated to the uncertainties on thermodynamic model and on the geometrical parameter less than 0.29% → negligible Among 8 uncertainties only 3-4 are really important
- A hierarchy of most influent parameters can be build Second contribution of stochastic analysis

Stochastic solution for some inlet conditions

- Computation of μ and σ for the pressure coefficient
- Analysis of maximal variance region
- Physical analysis allowed by stochastic computations

- Four designs are chosen, at lowest variance (LV), at largest mean (denoted HM), and two BT1 and BT2, for potential trade-off between $\mu(PO)$ and $\sigma(PO)$
- Mean solutions are sensitive to inlet conditions
- Higher inlet pressure \rightarrow higher mean design
- Lower inlet temperature \rightarrow lower mean design

(k) LV

(l) BT2

- Four designs are chosen, at lowest variance (LV), at largest mean (denoted HM), and two BT1 and BT2, for potential trade-off between $\mu(PO)$ and $\sigma(PO)$
- Variance concentrated on the compression shock location near the trailing edge
- Higher inlet pressure \rightarrow higher variance design
- Lower inlet temperature \rightarrow lower variance design

Numerical framework for an exhaustive analysis of ORC cycles performances

- Efficient stochastic method for taking into account **multiple-sources** of uncertainty
- \bullet Improved prediction \rightarrow numerical solution with a confidence interval
- Application on the robust analysis of a syloxane (D_6) in a turbine cascade
- Interest of the stochastic analysis

 \rightarrow **Parametric study** on the inlet conditions (For higher inlet pressure and temperature, higher mean and variance)

 \rightarrow **ANOVA** analysis and contribution (%) of each uncertainty to variance (**Predominance of some uncertainties**, uncertainty on p_{in} and T_{in} are **predominant**)

 \rightarrow Stochastic analysis of flows in turbine cascade

Perspectives

Numerical framework for an exhaustive analysis of ORC cycles performances

• Global efficiency indexes including uncertainty propagation

Thanks for your attention