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Supercritical Organic Rankine Cycle for waste heat 
recovery at high temperatures 



Waste Heat Utilization (WHU) 
Potential 

• Enova study (Norway): 7 TWhth industrial waste heat with temperatures 
above 140 °C (mainly in cement/iron industry) 

• Enova study applied on Germany gives a potential of 90 TWhth > 140 °C 

• Hamm et al.: 

• Germany:   42 TWhth/a 

• Worldwide:  1530 TWhth/a  

• Companies are willing to use waste heat due to 

• increasing energy costs and 

• emission trading. 
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Waste Heat Utilization (WHU) 
Supercritical vs. Subcritical Organic 
Rankine Cycle 
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 Non-isothermal heating 

 Lower exergy destruction 



Methods 
Simulation scheme within Aspen Plus V7.2 
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Methods  
Boundary conditions 

• Temperature range:  

– Heat source:  633.15 K ... 823.15 K  

– Heat sink:   353.15 K 

– ORC: maximum temperature according to smax 

• Minimum internal temperature approach 

– Heat source/ORC:     30 K 

– Internal recuperator, condenser:  10 K 

• ORC working pressure range 

– Subcritical:  0.2 MPa ... p(smax) (within 50 steps) 

– Supercritical:  1.01∙pcrit ... 1.30∙pcrit (within 30 steps) 

• Efficiencies: 0.7 (pump), 0.8 (turbine/generator-unit) 

• Pressure and radiation losses are neglected 
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Methods 
Maximum pressure and temperature 

Supercritical Organic Rankine Cycle for waste heat recovery | Markus Preißinger 

6 



Methods 
Working fluids, equation of state and 
validation 
 

• Homologous series of 3 alkanes, 3 alkylbenzenes, 3 siloxanes and  
2 cyclic siloxanes 

• Peng-Robinson equation of state 

– Validation 1:  PENG-ROB in comparison with BACKONE  
    (Lai et al., 2011) 
 

 

 

 

– Validation 2:  PENG-ROB in comparison with further equation of  
    states in Aspen Plus 
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VȮRC-B-T [l/s] VȮRC-A-R [l/s] ηth [%] QV̇ [MW] Ċ [kW/K] 

Simulation with Peng-Robinson 51 1810 18.6 5.37 23.3 

Simulation with BACKONE   51 1778 18.6 5.37 23.4 

Relative deviation [%] 0.0 1.8 0.0 0.0 -0.4 



Methods 
Working fluids, equation of state and 
validation 
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 Relative deviation 
within 1%  

 Similar results can 
be found for the 
thermal efficiency 
(deviation < 2 %)  

 Similar results can 
be found for 
further working 
fluids 



Thermodynamic results 
Net power output vs. working pressure 
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 Efficiency 
increase/decrease 
depends on 
temperature of 
heat source 

Theat source = 663.15 K 



Thermodynamic results 
Net power output vs. working pressure 
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 Efficiency 
increase/decrease 
depends on 
temperature of 
heat source 

 The higher the 
temperature the 
more fluids show 
maximum net 
power output in 
supercritical mode 

Theat source = 723.15 K 



Thermodynamic results 
Net power output vs. working pressure 
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 Efficiency 
increase/decrease 
depends on 
temperature of 
heat source 

 The higher the 
temperature the 
more fluids show 
maximum net 
power output in 
supercritical mode 

 At a certain 
temperature all 
fluids show best 
performance in 
supercritical mode  

Theat source = 793.15 K 



Thermodynamic results 
Correlation of net power output and  
critical pressure 
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 Strong correlation of 
net power output 
from critical 
pressure at low heat 
source temperatures 

Theat source = 663.15 K 



Thermodynamic results 
Correlation of net power output and  
critical pressure 
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 Strong correlation of 
net power output 
from critical 
pressure at low heat 
source temperatures 

 Correlation weakens 
for higher heat 
source temperatures 

Theat source = 693.15 K 



Thermodynamic results 
Correlation of net power output and  
critical pressure 
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 Strong correlation of 
net power output 
from critical 
pressure at low heat 
source temperatures 

 Correlation weakens 
for higher heat 
source temperatures 

 Correlation vanishes 
for even higher heat 
source temperatures 

Theat source = 823.15 K 



Thermodynamic results 
Correlation of net power output and  
critical temperature 
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 Correlation of net 
power output from 
critical temperature 
within a chemical 
class at low heat 
source temperatures 

Theat source = 663.15 K 



Thermodynamic results 
Correlation of net power output and  
critical temperature 
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 Correlation of net 
power output from 
critical temperature 
within a chemical 
class at low heat 
source temperatures 

 Correlation can just 
be seen for 
alkylbenzenes for 
higher heat source 
temperatures 

Theat source = 753.15 K 



Thermodynamic results 
Correlation of net power output and  
critical temperature 
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 Correlation of net 
power output from 
critical temperature 
within a chemical 
class at low heat 
source temperatures 

 Correlation can just 
be seen for 
alkylbenzenes for 
higher heat source 
temperatures 

 Correlation vanishes 
for even higher heat 
source temperatures 

Theat source = 823.15 K 



Constructional results 
Comparison within chemical classes I 
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 OMCTS shows 
highest volume flow 
rates at turbine 
outlet 

 Volume flow rates of 
OMTS and  
n-nonane are similar 

 Ethylbenzene has 
lowest volume flow 
rates 

Theat source = 663.15 K 



Constructional results 
Comparison within chemical classes I 
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 OMCTS shows 
highest volume flow 
rates at turbine 
outlet 

 Volume flow rates of 
OMTS and  
n-nonane are similar 

 Ethylbenzene has 
lowest volume flow 
rates 

 Same trends can be 
seen at higher heat 
source temperature 

Theat source = 753.15 K 



Constructional results 
Comparison within chemical classes II 
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 At fixed working 
pressure siloxanes 
show highest volume 
flow rate ratios within 
the turbine 

 OMCTS has steepest 
slope, volume flow 
rate ratio of 
ethylbenzene 
increases slightly  

 An inflexion point can 
be observed between 
sub- and supercritical 
mode of operation for 
all fluids 

Theat source = 753.15 K 



Comparison of chemical classes 
Heat exchanger size 
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Heat transfer results 
Nusselt number 
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Heat transfer results 
Case 1: Twall=const. 
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Heat transfer results 
Case 1: Twall=const. 
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Heat transfer results 
Case 2: Twall=Theat source 
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Heat transfer results 
Case 2: Twall=Theat source 
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Summary 
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• Study on supercritical Organic Rankine Cycle for waste heat utilization  

• 11 fluids out of 4 chemical classes (alkanes, alkylbenzenes, linear siloxanes, 

cyclic siloxanes) were investigated. 

• Net power output increase strongly depends on heat source temperature. 

• Correlation between net power output and physico-chemical properties 

depends on heat source temperature and chemical class. 

• Alkylbenzenes show highest net power output, lowest volume flow rate but 

highest working pressure. 

• Linear siloxanes show smaller volume flow rates and heat transfer capacities 

UA than cyclic siloxanes for similar net power output. 

• Prediction of heat transfer coefficients is quite complicated. 



Future work 
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• Integration of pressure and radiation losses 

• More detailed evaluation of heat transfer mechanism 

• Fluid-to-Fluid modelling for heat transfer correlations 

• Measurement of heat transfer coefficients in laboratory  

• Economic evaluation of  

supercritical Organic Rankine  

Cycle 



Markus Preißinger, Theresa Weith, Dieter Brüggemann 
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www.lttt.uni-bayreuth.de 
www.zet.uni-bayreuth.de 

Thank you  
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