

International Seminar on ORC Power Systems, TU Delft, 2011

Markus Preißinger, Theresa Weith, Dieter Brüggemann

Supercritical Organic Rankine Cycle for waste heat recovery at high temperatures

- Enova study (Norway): 7 TWh_{th} industrial waste heat with temperatures above 140 °C (mainly in cement/iron industry)
- Enova study applied on Germany gives a potential of 90 TWh_{th} > 140 °C
- Hamm et al.:
 - Germany: 42 TWh_{th}/a
 - Worldwide: 1530 TWh_{th}/a
- Companies are willing to use waste heat due to
 - increasing energy costs and
 - emission trading.

Waste Heat Utilization (WHU) Supercritical vs. Subcritical Organic **Rankine Cycle**

Cooling Circuit/ District Heating Network

Supercritical Organic Rankine Cycle for waste heat recovery | Markus Preißinger

Methods Boundary conditions

- Temperature range:
 - Heat source: 633.15 K ... 823.15 K
 - Heat sink: 353.15 K
 - ORC: maximum temperature according to s_{max}
- Minimum internal temperature approach
 - Heat source/ORC: 30 K
 - Internal recuperator, condenser: 10 K
- ORC working pressure range

UNIVERSITÄT

<u>Bayre</u>uth

- Subcritical: 0.2 MPa ... $p(s_{max})$ (within 50 steps)
- Supercritical: $1.01 \cdot p_{crit} \dots 1.30 \cdot p_{crit}$ (within 30 steps)
- Efficiencies: 0.7 (pump), 0.8 (turbine/generator-unit)
- Pressure and radiation losses are neglected

Methods Maximum pressure and temperature

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

- Homologous series of 3 alkanes, 3 alkylbenzenes, 3 siloxanes and 2 cyclic siloxanes
- Peng-Robinson equation of state
 - Validation 1: PENG-ROB in comparison with BACKONE (Lai et al., 2011)

	V _{ORC-B-T} [l/s]	V _{ORC-A-R} [l/s]	η _{th} [%]	Q [.] _V [MW]	C [kW/K]
Simulation with Peng-Robinson	51	1810	18.6	5.37	23.3
Simulation with BACKONE	51	1778	18.6	5.37	23.4
Relative deviation [%]	0.0	1.8	0.0	0.0	-0.4

 Validation 2: PENG-ROB in comparison with further equation of states in Aspen Plus

7

Methods Working fluids, equation of state and validation

- → Relative deviation within 1%
- → Similar results can be found for the thermal efficiency (deviation < 2 %)</p>
- → Similar results can be found for further working fluids

Thermodynamic results Net power output vs. working pressure

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

→ Efficiency increase/decrease depends on temperature of heat source

UNIVERSITÄT BAYREUTH

Supercritical Organic Rankine Cycle for waste heat recovery | Markus Preißinger

Thermodynamic results Net power output vs. working pressure

- → Efficiency increase/decrease depends on temperature of heat source
- → The higher the temperature the more fluids show maximum net power output in supercritical mode

Thermodynamic results Net power output vs. working pressure

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

- → Efficiency increase/decrease depends on temperature of heat source
- → The higher the temperature the more fluids show maximum net power output in supercritical mode
- → At a certain temperature all fluids show best performance in supercritical mode

500

450

400

350

300

250

200

150

100

50

0

0.0

1.0

2.0

3.0

p [MPa]

P_n [kW]

6.0

 $T_{heat \ source} = 793.15 \text{ K}$

4.0

5.0

Thermodynamic results Correlation of net power output and critical pressure

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

→ Strong correlation of net power output from critical pressure at low heat source temperatures

Thermodynamic results Correlation of net power output and critical pressure

UNIVERSITÄT

BAYREUTH

- → Strong correlation of net power output from critical pressure at low heat source temperatures
- → Correlation weakens for higher heat source temperatures

Thermodynamic results Correlation of net power output and critical pressure

- → Strong correlation of net power output from critical pressure at low heat source temperatures
- → Correlation weakens for higher heat source temperatures
- → Correlation vanishes for even higher heat source temperatures

Thermodynamic results Correlation of net power output and critical temperature

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

→ Correlation of net power output from critical temperature within a chemical class at low heat source temperatures

15

Thermodynamic results Correlation of net power output and critical temperature

- → Correlation of net power output from critical temperature within a chemical class at low heat source temperatures
- → Correlation can just be seen for alkylbenzenes for higher heat source temperatures

Thermodynamic results Correlation of net power output and critical temperature

- → Correlation of net power output from critical temperature within a chemical class at low heat source temperatures
- → Correlation can just be seen for alkylbenzenes for higher heat source temperatures
- → Correlation vanishes for even higher heat source temperatures

Constructional results Comparison within chemical classes I

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

 $T_{heat \ source} = 663.15 \ K$

- → OMCTS shows highest volume flow rates at turbine outlet
- → Volume flow rates of OMTS and
 - n-nonane are similar
- → Ethylbenzene has lowest volume flow rates

Constructional results Comparison within chemical classes I

- → OMCTS shows highest volume flow rates at turbine outlet
- → Volume flow rates of OMTS and
 - n-nonane are similar
- → Ethylbenzene has lowest volume flow rates
- → Same trends can be seen at higher heat source temperature

Constructional results Comparison within chemical classes II

2.0

p [MPa]

1.0

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

2100

1800

1500

1200

900

600

300

0

5.0

≥ P

dV_{out}

- → At fixed working pressure siloxanes show highest volume flow rate ratios within the turbine
- → OMCTS has steepest slope, volume flow rate ratio of ethylbenzene increases slightly
- → An inflexion point can be observed between sub- and supercritical mode of operation for all fluids

600

500

400

300

200

100

0

0.0

P_n [kW]

 $T_{heat \text{ source}} = 753.15 \text{ K}$

n-Nonane

3.0

Ethylbenzene

Octamethyltrisiloxane

Octmethylcyclotetrasiloxane

4.0

Comparison of chemical classes Heat exchanger size

Heat transfer results Nusselt number

Miropol'skiy-Shitsman $Nu_b = 0.023 \operatorname{Re}_b^{0.8} \operatorname{Pr}_{\min}^{0.8}$

Yamagata

$$Nu_b = 0.0135 \,\mathrm{Re}_b^{0.85} \,\mathrm{Pr}_b^{0.8} \mathrm{F}_c$$

$$\begin{aligned} F_{c} &= 1.0 \text{ for } E > 1 \\ F_{c} &= 0.67 \operatorname{Pr}_{pc}^{-0.05} \left(\frac{\bar{c}_{p}}{c_{pb}}\right)^{n_{1}} \text{ for } 0 \le E \le 1 \\ F_{c} &= \left(\frac{\bar{c}_{p}}{c_{pb}}\right)^{n_{2}} \text{ for } E < 0 \end{aligned} \qquad \begin{aligned} E &= \left(\frac{T_{pc} - T_{b}}{T_{w} - T_{b}}\right) \\ n_{1} &= -0.77 \left(1 + \frac{1}{\operatorname{Pr}_{pc}}\right) + 1.49 \\ n_{2} &= -1.44 \left(1 + \frac{1}{\operatorname{Pr}_{pc}}\right) - 0.53 \end{aligned}$$

Jackson and Hall

$$Nu = 0.0183 \operatorname{Re}_{b}^{0.82} \operatorname{Pr}_{b}^{0.5} \left(\frac{\rho_{w}}{\rho_{b}}\right)^{0.3} \left(\frac{\overline{c}_{p}}{c_{pb}}\right)^{n} \text{ with } n = f(T_{w}, T_{b}, T_{pc}) \approx 0.4$$

Heat transfer results Case 1: T_{wall}=const.

Heat transfer results Case 1: T_{wall}=const.

Heat transfer results Case 2: T_{wall}=T_{heat source}

Heat transfer results Case 2: T_{wall}=T_{heat source}

LEHRSTUHL FÜR TECHNISCHE THERMODYNAMIK UND TRANSPORTPROZESSE PROF. DR.-ING. D. BRÜGGEMANN

26

- Study on supercritical Organic Rankine Cycle for waste heat utilization
- 11 fluids out of 4 chemical classes (alkanes, alkylbenzenes, linear siloxanes, cyclic siloxanes) were investigated.
- Net power output increase strongly depends on heat source temperature.
- Correlation between net power output and physico-chemical properties depends on heat source temperature and chemical class.
- Alkylbenzenes show highest net power output, lowest volume flow rate but highest working pressure.
- Linear siloxanes show smaller volume flow rates and heat transfer capacities UA than cyclic siloxanes for similar net power output.
- Prediction of heat transfer coefficients is quite complicated.

Summary

- Integration of pressure and radiation losses
- More detailed evaluation of heat transfer mechanism
- Fluid-to-Fluid modelling for heat transfer correlations
- Measurement of heat transfer coefficients in laboratory
- Economic evaluation of supercritical Organic Rankine Cycle

Markus Preißinger, Theresa Weith, Dieter Brüggemann

International Seminar on ORC Power Systems, TU Delft, 2011

www.lttt.uni-bayreuth.de

www.zet.uni-bayreuth.de

Thank you

