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� Worldwide energy demand is continuously increasing.

� More than 50% of the fuel we use is waste.

But…..

� Conventional steam power cycles cannot give a better 

performance to recover low-grade waste heat.

� Organic Rankine Cycles show the known pinching problem.

So……

� Use of carbon dioxide in transcritical conditions in a 

Rankine cycles can solve both problems.

IntroductionIntroduction  



.

Description of the CDTPCDescription of the CDTPC  

� Rankine cycle where the working fluid (CO2) goes through 

both subcritical and supercritical states, “a transcritical 

cycle”.



 

Y. Chen et al. / Applied Thermal Engineering 26 (2006) 2142–2147

Description of the CDTPCDescription of the CDTPC

� In the evaporator, it is obtained a better fit with the 

heat source when the heat is added to the working 

fluid in supercritical conditions. 



Modelling of the processModelling of the process

• Constant isentropic efficiencies of 75% are assumed for the 

pump as well as for the turbine.

• Steady state conditions. 

• No pressure drop or heat loss in the evaporator, condenser or 

the pipes.

• An inlet temperature of the condensation water T7=15 ºC.

• Working fluid condensation temperature T3=25 ºC.

• Turbine inlet temperature T1=150 ºC.

• Turbine inlet pressure P1, varying from 66 bar until the net 

work was around zero.

 



Modelling of the process.Modelling of the process.  

• The cycle’s total energy efficiency is:

• The exergy efficiency is defined as:
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is the exergy loss (destruction) of each component i 

(evaporator, turbine, condenser and pump) that can be 

found from an exergy balance.

iI&

E& Exergy rate.
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ENERGY ANALYSIS

Energy efficiency vs Pressure PEnergy efficiency vs Pressure P 11 with an inlet temperature to the turbine at 150 with an inlet temperature to the turbine at 150 ººC.C.

 

� Energy efficiency increases as pressure P1 rises.

� A parabola-like behaviour. 



Results and discussionResults and discussion

Work produced and consumed by the turbine and the p ump, respectiWork produced and consumed by the turbine and the p ump, respecti vely vs vely vs 
Pressure PPressure P 11 with an inlet temperature to the turbine at 150 with an inlet temperature to the turbine at 150 ººC.C.
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ENERGY ANALYSIS

� Energy. 

*F. Vélez et al. / Energy 36 (2011) 5497-5507
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Exergy efficiency vs Pressure PExergy efficiency vs Pressure P 11 with an inlet temperature to the turbine at 150 with an inlet temperature to the turbine at 150 ººC.C.

 

EXERGY ANALYSIS

� Exergy. 



. Effect of the inlet pressure to the turbine over th e irreversibiEffect of the inlet pressure to the turbine over th e irreversibi lities of the process lities of the process 
with an inlet temperature to the turbine at 150 with an inlet temperature to the turbine at 150 ººC.C.
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Results and discussionResults and discussion

� Irreversibilities of the process in each device.

*F. Vélez et al. / Energy 36 (2011) 5497-5507

EXERGY ANALYSIS



.

 Results and discussionResults and discussion

Irreversibilities of the process in optimum conditi ons with an iIrreversibilities of the process in optimum conditi ons with an i nlet temperature to nlet temperature to 
the turbine at 150 the turbine at 150 ººC.C.

� Irreversibilities of the process in each device at 

optimum conditions.

EXERGY ANALYSIS



ConclusionsConclusions

� CDTPC is suitable for the production of useful energy utilising 

low enthalpy heat.

� It is possible to operate with a CDTPC in relatively low 

temperature ranges.

�Maximun point in the energy efficiency of the process is found.

 

Parameter 

Pressure 
(bar)  

η 
(%) 

 
ηE 
(%) 

 
wne 

(kJ/kg) 

172.0  8.0  40  17.5 

Optimum conditions of design at TOptimum conditions of design at T11=150=150ººC. C. 



Low temperature heat source for power generation: 

Exhaustive analysis of a carbon dioxide transcritical power cycle
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