

1st International Seminar on ORC Power Systems

Sept 22-23, 2011 - Delft, NL

Design, Simulation and Construction of a Test Rig for Organic Vapours

A. Spinelli, M. Pini, V. Dossena, P. Gaetani, F. Casella*

POLITECNICO DI MILANO

Fluid-dinamics of Turbomachines Laboratory Energy Department

* Electronics and Information Department

in collaboration with

A PRATT & WHITNEY POWER SYSTEMS COMPANY

Motivation

Increase ORC turbine efficiencies via passage flow field investigation

→ Experimental investigation of ORC turbine passage flows

NO experimental data for flows within ORC turbine blade passages

- **Properties** $T_T, P_T, P, u, \alpha, \psi$
- Independent measurement of *P* and *u* field direct measurement of *u* consistency of thermodynamic models e.g. $h(P_T, T_T) = h(P, T) + |u|^2/2$
- **Techniques** total pressure probes & pressure taps (P_T, P) thermocouples (T_T) , LDV (v), Schlieren (shock waves)

limited investigation in industrial plants → TROVA (Test Rig for Organic Vapors)

- \rightarrow Background on ORC
- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA
- \rightarrow Conclusions

\rightarrow Background on ORC

- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA
- \rightarrow Conclusions

Design, Simulation and Construction of a Test Rig for Organic Vapours

Background – ORC & turbine flow

Rankine cycle + organic working fluid – Mm, complexity

- Advantages on cycle, plant, operation
- Disadvantages on turbine flows

- \rightarrow viable technology, low/med *T*, *W*_{el}
- real-gas effects, low speed of sound
- limited knowledge of expansions $(\eta_T \text{design tools})$

State of the art

novel real-gas models (Span-Wagner) + CFD (zFlow), separate validations

Background – ORC & turbine flow

Rankine cycle + organic working fluid – Mm, complexity

- Disadvantages on turbine flows
- Advantages on cycle, plant, operation \rightarrow viable technology, low/med T, W_{el}
 - real-gas effects, low speed of sound
 - limited knowledge of expansions $(\eta_T - \text{design tools})$

State of the art

novel real-gas models (*Span-Wagner*) + CFD (zFlow), separate validations

\rightarrow PROVIDE EXPERIMENTAL DATA ON FLOWS **TYPICAL OF ORC TURBINE PASSAGE**

- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA
- \rightarrow Conclusions

Dedicated facility – Design

- Limits for investigation industrial ORC plants
- Controlled flow for calibration

TEST SECTION: planar straight axis convergent – divergent nozzlequasi – 1D, isentropic expansion (no calibrated probes)**FLUIDS:**Siloxanes & Hydrofluorocarbons – thermodynamics, safetySiloxane MDM (high T) & HFC R245fa (low T)

OP COND: parameters $A_t - P_{T,6}$, $T_{T6} - \beta_{max} - P_7$

CYCLE:Gas cycle vs Phase transition cyclehigh costs for continuous operation

Dedicated facility – Design

- Limits for investigation industrial ORC plants
- Controlled flow for calibration

TEST SECTION: planar straight axis convergent – divergent nozzlequasi – 1D, isentropic expansion (no calibrated probes)**FLUIDS:**Siloxanes & Hydrofluorocarbons – thermodynamics, safetySiloxane MDM (high T) & HFC R245fa (low T)

OP COND:parameters $A_t - P_{T,6}$, $T_{T6} - \beta_{max} - P_7$ **CYCLE:**Gas cycle vs Phase transition cycle

high costs for continuous operation

350

Dedicated facility – Design

- Limits for investigation industrial ORC plants
- Controlled flow for calibration

TEST SECTION: planar **straight axis** convergent – divergent **nozzle**

quasi – 1D, isentropic expansion (no calibrated probes)FLUIDS:Siloxanes & Hydrofluorocarbons – thermodynamics, safetySiloxane MDM (high T) & HFC R245fa (low T)

OP COND: parameters $A_t - P_{T,6}$, $T_{T6} - \beta_{max} - P_7$

CYCLE: Gas cycle vs Phase transition cycle

high costs for continuous operation

TROVA – A blow down facility

Closed loop – phase transition – batch operating facility

- \downarrow **power –** \uparrow **energy** exchange time: storage $P_{T,4} > P_{T,6}$ limited test duration
- Unsteady nozzle flow: constant $P_{T,6}$ (MCV) change in $b_{T,6}$ (HPV)
 - \rightarrow sequence of steady flows with transient operating conditions $P_{T,6}$, $T_{T,6}$

TROVA – A blow down facility

Closed loop – phase transition – batch operating facility

- \downarrow **power –** \uparrow **energy** exchange time: storage $P_{T,4} > P_{T,6}$ limited test duration
- Unsteady nozzle flow: constant $P_{T,6}$ (MCV) change in $h_{T,6}$ (HPV)
 - \rightarrow sequence of steady flows with transient operating conditions $P_{T,6}$, $T_{T,6}$

Sizing procedure & results

EVALUATE HPV/LPV V, P, T \rightarrow $t_{min} \approx 20$ s

Iterative nozzle flow calculation – Lumped parameter – MDM, R245fa

- **Parameters setting** V_{HPV} , V_{LPV} , P_{HPV}
- Initial conditions nozzle flow operating conditions
- Calculation $t \rightarrow$ unsteady mass & energy bal. vessels b.c. update
- Calculation stop
- **Parameters update** if $t_{ex} \leq t_{min}$
- Safety check

 $P_{T.5} = P_{T.6}$ or \perp shock at exit

 P_{max} for tanks connection

Sizing procedure & results

EVALUATE HPV/LPV V, P, T \rightarrow $t_{min} \approx 20$ s

Iterative nozzle flow calculation – Lumped parameter – MDM, R245fa

- **Parameters setting** V_{HPV} , V_{LPV} , P_{HPV}
- Initial conditions nozzle flow operating conditions
- **Calculation** $t \rightarrow$ unsteady mass & energy bal. vessels b.c. update
- Calculation stop
- **Parameters update** if $t_{ex} \leq t_{min}$
- Safety check

- $P_{T,5} = P_{T,6}$ or \perp shock at exit
- P_{max} for tanks connection

MDM – Vessels design

MDM – HPV conditions, tests

	HPV	LPV		MDM	R245fa
V (m ³)	1.0	5.6	$P_{T,4(t=0)}$ (bar)	50	50
P _{max} (bar)	50.0	20.0	$T_{T,4(t=0)}$ (°C)	315	176.5
T _{max} (°C)	400.0	400.0	t _{ex} (s)	12	28.5

POLITECNICO DI MILANO

A PRATT & WHITNEY POWER SYSTEMS COMPA

POLITECNICO DI MILANO

A PRATT & WHITNEY POWER SYSTEMS COM

POLITECNICO DI MILANO

A PRATT & WHITNEY POWER SYSTEMS COM

POLITECNICO DI MILANO

A PRATT & WHITNEY POWER SYSTEMS COMP

A PRATT & WHITNEY POWER SYSTEMS COMPANY

- \rightarrow Background on ORC
- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA
- \rightarrow Conclusions

Dynamic simulation

Batch operation + control systems \rightarrow **START-UP** and **TEST** time

- Processes to simulate: heating test condensation
- Batch simulation:
- Model approaches:
- Simulation tools:

batch operation of the facility lumped parameter / 1D (plant) + 1D (nozzle) *Modelica* (object-oriented language) + *FluidProp* simple models \rightarrow complex model *Fortran* + *FluidProp* lack of component models – e.g. nozzle \rightarrow *TestRig*

• Self-made library:

Design, Simulation and Construction of a Test Rig for Organic Vapours

Dynamic simulation

Batch operation + **control** systems \rightarrow **START-UP** and **TEST** time

200 R245fa $_{37 \text{ bar}}^{37 \text{ bar}}^{2 \text{ bar}}$

SELECTED CASES

	MDM ₁	MDM ₂	R245fa	
P _{T,4} (bar)	50	50	50	300. h=const 4 6 8
Т _{т,4} (°С)	315	311.4	176.5	 70 70 70 70 70 70 70 70 70 70
P _{T,6} (bar)	25	10	37	€ 200. ⊢
Т _{т,6} (°С)	310	276.9	159.2	100.
P ₇ (bar)	1	1	2	
T_{cond} (°C)	40	40	40	-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1. s(kJ/(kg K))
Design, Simulatio	n and Constru	uction of a Test	Rig for Organic	Vapours

Models – Heating system

Models – Test system

A PRATT & WHITNEY POWER SYSTEMS COMP

Design, Simulation and Construction of a Test Rig for Organic Vapours

11 / 18

Models – Test system

Simulation results: heating & condensing

systems

FINAL CONDITIONS

		MDM ₁	MDM ₂	R245fa			MDM ₁	MDM ₂	R245fa
P _{T,4}	(bar)	50	50	50	P _{T9}	(bar)	0.012	0.012	2.51
T _{T,4}	(°C)	315	311.4	176.5	T _{T9}	(°C)	40	40	40
$ ho_{T,4}$ (k	g/m ³)	372.9	364.0	498.2	P _{T6}	(bar)	25	10	37
t _{heating}	(s)	25000	25000	10000	t _{con}	d (s)	1000	1500	2000

Design, Simulation and Construction of a Test Rig for Organic Vapours

clean energy ahead

A PRATT & WHITNEY POWER SYSTEMS COM

Simulation results: test

FINAL CONDITIONS

	MDM_1	MDM_2	R245fa
P _{T,4} (bar)	25	17.7	37
Т _{т,4} (°С)	308	302.5	158.1
P _{T,9} (bar)	2.27	4.44	8.33
Т _{т,9} (°С)	275	277	104.8
P _{T,6} (bar)	25	10	37
M _{dis} (kg)	75	149	156
t _{ex} (s)	12	93	28.6
Simulation and Construction	n of a Test Rig for Orga	anic Vapours	ean energy ahead BODEN SYSTEMS COMPANY

Design, Simulation and Construction of a Test Rig for Organic Vapours

Simulation results: nozzle regimes

Lumped parameter dynamic simulation – *Modelica*

Different regimes in time

Quasi 1-D steady calculation at different P_8 **Different regimes in space**

Simulation results: nozzle regimes

Lumped parameter dynamic simulation – *Modelica*

Different regimes in time

Quasi 1-D steady calculation at different P_8 **Different regimes in space**

- \rightarrow Background on ORC
- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA

\rightarrow Conclusions

Design, Simulation and Construction of a Test Rig for Organic Vapours

TROVA 3D layout & construction

<image>

Design, Simulation and Construction of a Test Rig for Organic Vapours

TROVA 3D layout & construction

Design, Simulation and Construction of a Test Rig for Organic Vapours

- \rightarrow Background on ORC
- \rightarrow Design of the TROVA
- \rightarrow Dynamic simulation of the TROVA
- \rightarrow Construction of the TROVA
- \rightarrow Conclusions

Conclusions

- Experimental investigation on typical ORC turbine expansions
 flow caracterization code validations
- Measurements in industrial ORC turbines: limits needs of calibrated probes
- TROVA: bolw-down phase transition facility
- Design & simulation \rightarrow performance of proposed investigation
- Construction
- Conceived for ORC fluids/applications other applications in real gases
 real gases calibration tunnel

Developments

- Control + DAQ software
- Commissioning → TEST

Design, Simulation and Construction of a Test Rig for Organic Vapours

Ackowledgements

- Profs Osnaghi, Dossena, Gaetani, Mr. Deponti, Matteo Pini, Emiliano Casati
- Prof. Mario Gaia & Turboden staff
- Alberto Guardone
- Prof. Piero Colonna, Teus van der Stelt
- Profs Gianfranco Angelino & Costante Invernizzi
- Manufacturers Mr. Malavasi, Mr. Fermi

Design, Simulation and Construction of a Test Rig for Organic Vapours

Aerospace Department

THANK YOU FOR YOUR ATTENTION

Design, Simulation and Construction of a Test Rig for Organic Vapours

