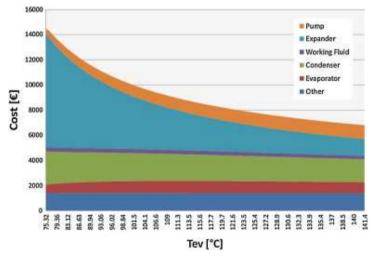


DEVELOPMENT OF A WASTE HEAT RECOVERY ORC PROTOTYPE USING AN OIL-FREE SCROLL EXPANDER

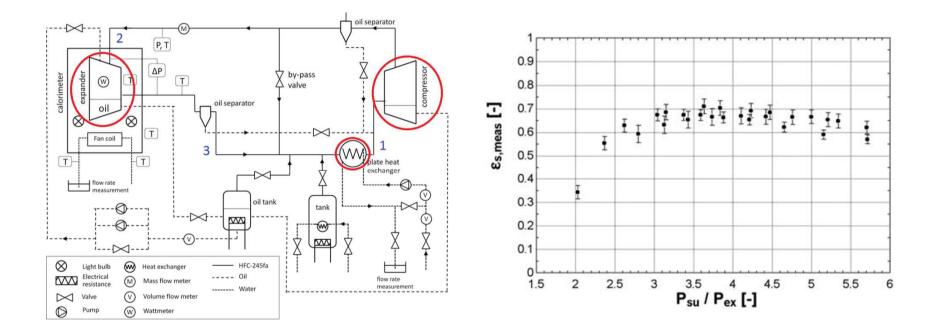

22TH SEPTEMBER 2011

Sébastien Declaye, Sylvain Quoilin and Vincent Lemort Thermodynamic Laboratory (University of Liege, Belgium)

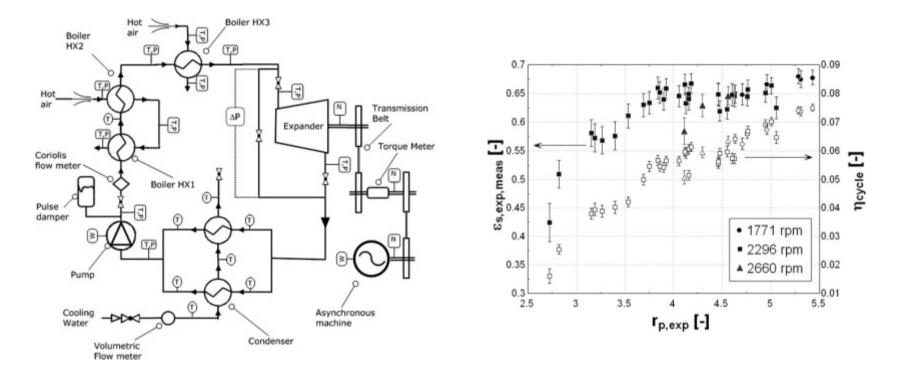
INTRODUCTION

- In small-scale (a few electric kW) ORC, a very important issue is the total installed **cost** of the system.
- S.Quoilin et al. * show that the cost of the system can be dramatically reduced by selecting both appropriate fluid and working conditions
- In the same work it was demonstrated that, depending of working conditions, expander cost can represent more than 50% of total component cost.

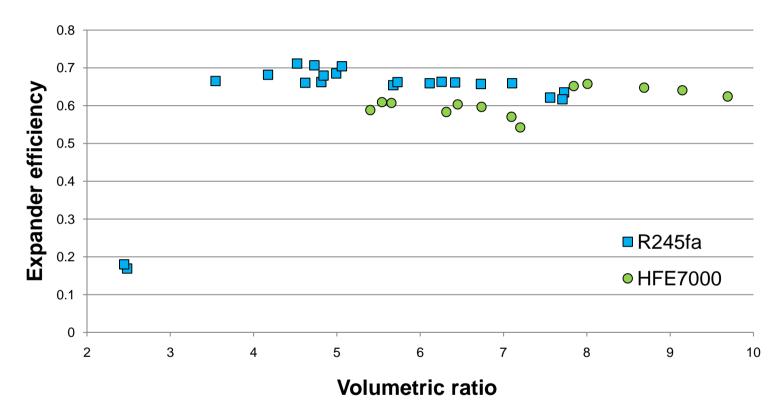
⇒ Interest in developing low cost expander


RETROFIT OF COMPRESSORS

- Low cost expander can be obtained by modifying existing compressor
- Scope of modifications required depends on both compressor type and original application.
- Due to high volume production of these machines, prices are competitive
- Both scroll air compressors and refrigeration scroll compressors can be converted to expander


PREVIOUS SCROLL EXPANDER TEST RESULT

- Refrigeration scroll compressor tested in expander mode in a gas cycle with R245fa
- Several pressure ratio and oil fraction investigated
- Maximum isentropic efficiency : **71%**


PREVIOUS SCROLL EXPANDER TEST RESULT

- Air scroll compressor tested in expander mode in an ORC loop with R123
- Several speed and pressure ratio investigated
- Maximum isentropic efficiency : 68%

PREVIOUS SCROLL EXPANDER TEST RESULT

- Air scroll compressor tested in expander mode in an ORC loop with R245fa and HFE7000
- Several speed and pressure ratio investigated
- Maximum isentropic efficiency : **71%**

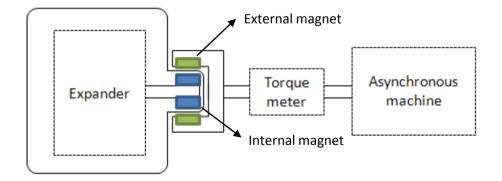
SCROLL EXPANDER COMPARISON

	Refrigeration Scroll	Air Scroll
Lubrication	Yes	No
Hermetic	Yes, both compressor	No, the machine is open
	elements and electrical	drive
	motor are enclosed in a tight	
	container	
Built-in volumetric ratio	Around 3	Around 4
Maximum pressure	Up to 30 bars	Up to 10 bars
Maximum temperature	Up to 150 °C	Up to 200 °C
Conversion to expander	Some key internal elements	The only required
	of the compressor such as	modification is the
	valves or springs has to be	removing of the external
	removed or modified	cooling fan
Generator	Included	Freely sized
Isentropic efficiency	Around 70%	Around 70%

SCROLL EXPANDER COMPARISON


	Refrigeration Scroll	Air Scroll
Lubrication	Yes	No
Hermetic	Yes, both compressor	No, the machine is open
	elements and electrical	drive
	motor are enclosed in a tight	
	container	
Built-in volumetric ratio	Around 3	Around 4
Maximum pressure	Up to 30 bars	Up to 10 bars
Maximum temperature	Up to 150 °C	Up to 200 °C
Conversion to expander	Some key internal elements	The only required
	of the compressor such as	modification is the
	valves or springs has to be	removing of the external
	removed or modified	cooling fan
Generator	Included	Freely sized
Isentropic efficiency	Around 70%	Around 70%

ZERO LEAKAGE OIL FREE SCROLL EXPANDER



- Expander enclosed in a steel container.
- No moving part through the container
- Power transmitted through the wall by means of a magnetic coupling

No external leakages
No friction

OTHER COMPONENTS OF THE CYCLE

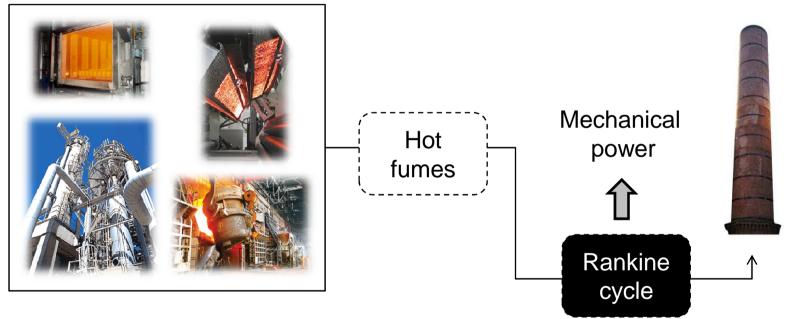
Fluids

- Working fluid : R245fa
- Heat source : hot gas ranging from 150 and 200 °C
- Cooling medium : water ranging form 10 to 17°C

Components

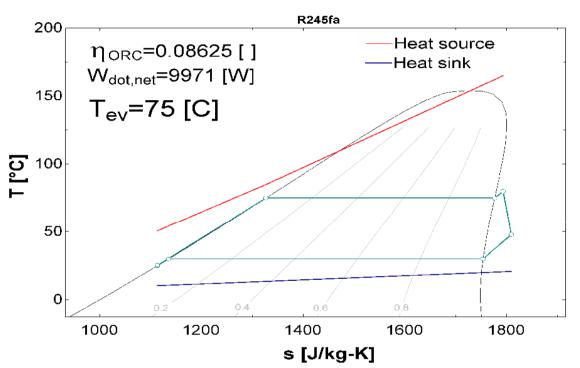
- Condenser : brazed plate heat exchanger
- Evaporator : brazed plate heat exchanger
- Pump : diaphragm pump

Main measurement devices


- Type T thermocouples
- Torque meter on expander shaft
- Coriolis effect flow meter for R245fa flow measurement
- ...

OPEN LOOP WASTE HEAT RECOVERY CYCLE

Industrial process

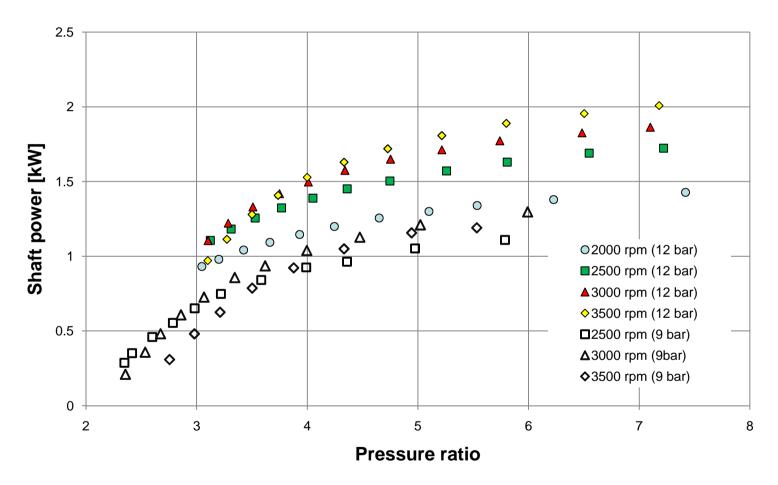


The heat that is not transferred to the ORC is released to the atmosphere.

In this case, the parameter to maximize during cycle design is **not** the cycle efficiency. Maximizing the cycle efficiency can lead to waste a large fraction of the available heat

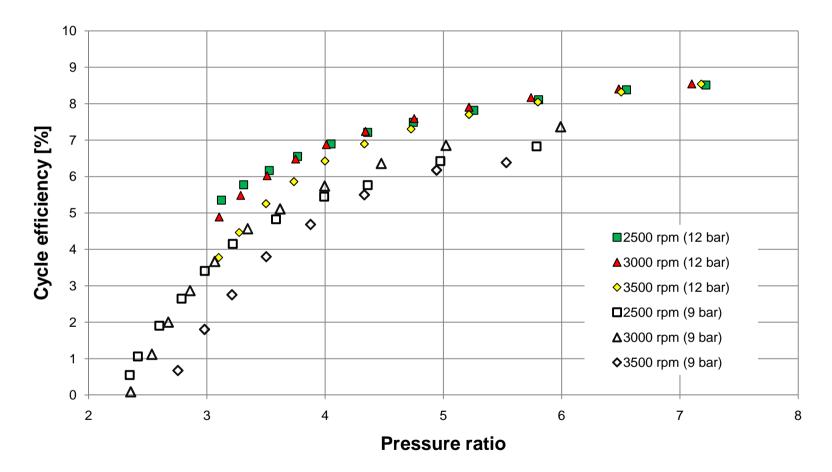
OPEN LOOP WASTE HEAT RECOVERY CYCLE

- Low evaporating temperature : large fraction of available heat recovered but poor conversion efficiency.
- High evaporation temperature : low fraction of available heat recovered but high conversion efficiency.
- → Trade-off that also depend of economic concern


80 [%] ₀_०∎०∎०■ • ⊘ 0 🖊 Expander isentropic efficiency 70 г£ • \diamond \diamond 60 Λ Speed (Inlet pressure) 0 \diamond Δ • 2000 rpm (12 bar) 50 \diamond ■ 2500 rpm (12 bar) Δ ▲ 3000 rpm (12 bar) 40 0 ◆ 3500 rpm (12 bar) □ 2500 rpm (9 bar) 30 △ 3000 rpm (9 bar) ٥ ♦ 3500 rpm (9 bar) Δ 20 2 3 4 5 6 7 8 **Pressure ratio**

EXPANDER ISENTROPIC EFFICIENCY

- 76% maximum isentropic efficiency at 2500 RPM
- Flat curve at high pressure ratio
- Sharp decrease for low pressure ratio



EXPANDER SHAFT POWER

CYCLE EFFICIENCY

CONCLUSION

Successful test of an oil-free scroll expander

- External leakages eliminated by magnetic power transmission
- 76% maximum isentropic efficiency
- No oil required
- No modification on the machine it-self
- Generator can be chosen separately

THANK YOU FOR YOUR ATTENTION