## To recuperate or not to recuperate -ORC cycles compared to ideal cycles

#### Pall Valdimarsson University of Iceland, Reykjavik, Iceland



ORC 2011 First International Seminar on ORC Power Systems

In memory of Prof. G. Angelino

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands





- The performance of real power cycles for heat source in the temperature range from 100°C to 300℃ is studied in this paper.
- A reference is made to three ideal power production cycles:
  - Carnot
  - Triangular
  - Lorenz.





- The source fluid flow is 1 kg/s for all calculations
- The real cycles are assumed to have infinite heat exchanger area
- Pumps and turbines are isentropic
- The cooling fluid is produced by external means, without being a parasite of the power plant.





- The binary cycles studied are:
  - ORC with a single high pressure level
  - ORC with two pressure high levels
  - Saturated Kalina cycle
  - Transcritical cycle
  - Single and double flash geothermal power cycles are included as well
    - A few different working fluids are considered for the ORC cycles
    - A few different ammonia concentrations for the Kalina cycle.





• 
$$z = f(T_{source}, T_{return})$$

- The produced power for these cycles from the same source is then compared and a range of superiority for each cycle presented.
- The effect of recuperation on the produced power as well as on the calculated efficiency is shown.



• Finally the influence of finite heat exchanger area is analyzed and an estimate of the cooling fluid generation parasitic power made both for air and wet cooling tower system.



### Source properties – the denominator

Geothermal  $\dot{m}_{source} = constant$   $\dot{Q}_{in} \neq constant$   $\dot{Q}_{available} > \dot{Q}_{in}$   $\eta_{max} = \lim_{\dot{Q}_{in} \to 0} \left(\frac{\dot{W}}{\dot{Q}_{in}}\right); \Rightarrow \dot{W}(\eta_{max}) = 0$  $PC = \frac{\dot{W}}{\dot{m}_{source}} = \frac{E}{M_{source}} \left[\frac{kWh}{ton}\right]$  WHR











**Optimistic Carnot** 







**Pessimistic Carnot** 





FAC STRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE





Lorenz







Lorenz







**()** 







#### Saturated Isopentane









#### **Recuperated Isopentane**







#### Superheated Isopentane









#### **Transcritical Isopentane**









Double pressure













Kalina 80% ammonia





TY OF INDUSTRIAL ENGINEERING, FACUL MECHANICAL ENGINEERING AND COMPUTER SCIENCE Single flash











Kalina





# Dank U wel !!

