SHAPE OPTIMIZATION OF AN ORC RADIAL TURBINE NOZZLE

D. Pasquale, A. Ghidoni & S. Rebay

Università degli Studi di Brescia, Dipartimento di Ingegneria Meccanica e Industriale, Via Branze 38, 25123 Brescia, Italy

Delft - September 22th - 23th, 2010

Outline

- ORC Turbine
- Objectives
- Tri-O-Gen Design

Methodology

Optimization Algorithm

3 Results

Optimization Strategies Comparison

Optimized Results

Outline

- ORC Turbine
- Objectives
- Tri-O-Gen Design
- 2

Methodology

Optimization Algorithm

• Optimization Strategies Comparison

Optimized Results

Outline

- ORC Turbine
- Objectives
- Tri-O-Gen Design
- 2 Methodology
 - Optimization Algorithm

Optimization Strategies Comparison

◆□> ◆□> ◆注> ◆注> 注

Optimized Results

ORC Turbine Objectives Tri-O-Gen Design

Small Power Output ORC Turbine (< 500kWe)

Expansion:

- real gas effects
- high pressure ratio
- high volume ratio
- Iow specific enthalpy drop

Challenging Design:

- small-size turbomachinery
- moderate/high rotational speed
- few stages

Intensive use of CFD to design high-efficiency and optimized turbines

Objectives

General Geometry Parameterization

 development of a generic blade shape parameterization suitable for radial and axial supersonic geometries

General Optimization Procedure

- development of an efficient, effective and fully automated optimization procedure
- comparison of different optimization strategies in terms of convergence rate

Test Case

 improve the performance of the original Tri-O-Gen stator in terms of flow uniformity and shock losses

ORC Turbine Objectives Tri-O-Gen Design

Tri-O-Gen Original Stator Design

Turbine Features

- one stage radial inflow turbine ($\simeq 150 kW_e$)
- high expansion ratio $\beta \simeq 62$ low degree of reaction

flow dis-uniformity

Shape Optimization of an ORC Radial Turbine Nozzle

Optimization Algorithm

Off-line trained Metamodel

Optimization Algorithm

Objective Function Definition

Minimization of one objective function

sum of three non-concurrent contributions:

$$\varphi = \varphi_{M} + \varphi_{\alpha} + \varphi_{P_{0_{\log}}}$$

where:

 $M_{\rm toll} = 0.025$

$$lpha_{
m trg} = 106[^\circ] \qquad \qquad P_{0_{
m toll}} = 0.05$$

 $lpha_{
m toll} = 1[^\circ]$

and q is the number of grid nodes at the outlet bound

Original TriOgen Design Performance

 $\varphi_{\rm des} = 2.035 + 1.761 + 3.533 = 7.329$

Geometry Generation

B-Spline Curves

$$\mathbf{B}(u) = \sum_{i=1}^{n} N_i(u) \mathbf{P}_i$$

- cubic curves
- C² continuous at the junctions
- chordal parametrization

Design Variables

- throat angle and position (δ , Th_r , Th_{θ})
- trailing edge aperture angle (α)
- trailing edge discharge angle (β)
- 1 d.o.f. for each *free* control point (*prm_x*) of 2 curves (diverging part)

Optimization Algorithm

Grid generation and CFD solver

adMesh

- fully automated 2D unstructured mesh generator
- hybrid anysotropic elements
- based on the advancing-Delaunnay algorithm

zFlow

- hybrid Finite Element (FE)/Finite Volume (FV) RANS solver
- linked to *FluidProp*, a fluid library for thermodynamic and transport properties calculation using state of the art physical models

- 4 ∃ →

CFD Solution

Grids

- 2D unstructured grid with local refinements
- three different spacing:
 - very coarse (~ 2000 cells)
 - coarse (≃ 5000 cells)
 - fine (~ 35000 cells)

Flow Solver

- inviscid flow (2D Euler equations)
- accurate toluene thermodynamic properties (Lemmon - Span EOS)

Bounday Conditions:

- total inlet pressure and temperature
- static backpressure ($\beta \simeq 58$)

Optimization Strategy Off-Line Trained Metamodel

Nexus

- commercial multi-disciplinary and multi-objective optimisation framework
- several gradient-based and evolutionary algorithms available
- several metamodels available
- GUI and batch-mode

Design Of Experiment

- Latin HyperCube allocation
- correlation based on entropy formulation

Kriging

- constant, linear and quadratic base functions
- Gaussian and exponential interpolating functions

Artificial Neural Network

- one and two layers
- five to twenty neurons
- early-stopping technique

Optimization Strategies Comparison Optimized Results

Optimization Strategies Comparison

Test Case

- coarse grid
- 10 design variables (throat with 2 d.o.f)
- ▶ 1 Metamodel (φ) or
 3 Metamodels (φ_M, φ_α, φ<sub>P_{0har})
 </sub>

D. Pasquale, A. Ghidoni & S. Rebay

120

CFD Calls

Optimization Strategies Comparison Optimized Results

Optimized Results: Fixed Throat

8 design variables

found after 102 CFD simulations

$$arphi = 0.912 + 1.476 + 3.143$$

= 5.531

D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle

Optimization Strategies Comparison Optimized Results

Optimized Results: Throat with 1 d.o.f. (r)

9 design variables

found after 125 CFD simulations $\varphi = 0.947 + 1.196 + 1.266$

= 3.409

D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle

ptimization Strategies Comparison Optimized Results

Optimized Results: Throat with 2 d.o.f. (r, θ)

10 design variables

found after 278 CFD simulations

arphi = 0.944 + 1.043 + 1.271= 3.258

Optimization Strategies Comparison Optimized Results

Preliminary Results: Half Number of Blades

10 design variables

found after 205 CFD simulations

 $\varphi = 0.961 + 1.217 + 0.934$ = 3.112

D. Pasquale, A. Ghidoni & S. Rebay Shape Optimization of an ORC Radial Turbine Nozzle

Optimized Results: Summary

Objective Function

Design	$arphi_{M}$	%	$arphi_{lpha}$	%	$arphi_{P_{0_{\mathrm{loss}}}}$	%	arphi	%
Original	2.035		1.761		3.533		7.329	
$Th_{\rm fix}$	0.912	-55.2	1.476	-16.2	3.143	-11.0	5.531	-24.5
Th_{1dof}	0.947	-53.5	1.196	-32.1	1.266	-64.2	3.409	-53.5
Th_{2dof}	0.944	-53.6	1.043	-40.8	1.271	-64.0	3.258	-55.5
$Th_{2dof, \frac{Z}{2}}$	0.961	-52.8	1.217	-30.9	0.934	-73.6	3.112	-57.5

Downstream Mixed Flow Parameters

Design	М	%	lpha [°]	%	Po	%
Original	2.726		-106.15		0.8234	
$Th_{\rm fix}$	2.747	+0.77	-106.50	-0.33	0.8429	+2.37
Th_{1dof}	2.781	+2.02	-106.50	-0.33	0.9369	+13.78
Th_{2dof}	2.781	+2.02	-106.46	-0.29	0.9365	+13.74
$Th_{2dof, \frac{Z}{2}}$	2.788	+2.27	-106.47	-0.30	0.9532	+15.76

イロト イポト イヨト イヨト

3

Conclusions

Achieved so far

- general blade parameterization based on B-Spline curves
- comparison of a standard Genetic Algorithm optimization with respect to off-line trained Metamodels
- real turbine nozzle shape optimization based on Euler equations and real gas equation of state
- comparison of selected geometries with respect to the original design

Future development

- extension to turbulent flows
- extension to Multi-Objective Optimization
- extension to three-dimensional geometries
- further investigation for more efficient optimization algorithm (e.g. Hierarchical, Metamodel-Assisted Evolutionary Algorithms)

THANK YOU ALL!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >