

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

Energetical, Technical and Economical considerations by choosing between a Steam and an Organic Rankine Cycle for Small Scale Power Generation

Delft, September 23th, 2011

Ignace Vankeirsbilck, Bruno Vanslambrouck*, Sergei Gusev Howest, University College of West Flanders, Kortrijk-Belgium Department of Masters in Industrial Sciences Michel De Paepe, Ghent University, Belgium Department of Flow, Heat and Combustion Mechanics * Presenting author

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino UNIVERSITEIT GENT Lid van de Associatie Universiteit Gent

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- 5. Optimal use of a heat source
- **6.** Calculation tool
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

1. ORC research objectives

- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- **5. Optimal use of a heat source**
- **6. Calculation tool**
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

- To give an answer how to choose between a steam cycle and ORC for a given (waste) heat source related to small scale power generation
- Influence of all process parameters
- Effectiveness of a recuperater
- Influence of temperature profile heat source
- Economic analysis and comparison (not in this presentation)
- Selection criteria steam vs. ORC
- Elaborate industrial case studies
- Demonstrate ORC via a lab scale test rig

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- **5. Optimal use of a heat source**
- 6. Calculation tool
- 7. Conclusions

iwi

The Steam Cycle

Wide range of steam turbines to recover waste heat and transform into electricity :

- impuls -, reaction turbine
- condensing -, backpressure turbine
- saturated -, superheated steam

Example: Siemens SST series

Live steam pressure	: 3 – 130 bara
Live steam temperature	: dry sat. – 530°C
Exhaust steam pressure	: 0,08 – 29 bara
Speed	: 500 – 23000 rpm
Power	: 300 – 10000 kW

The Steam Cycle

- Superheating required to avoid condensation during expansion in turbine
- Only small part of total heat required on high t^o level to superheat: no optimal use of the heat source, lower cycle efficiency

The Steam Cycle

Disadvantages to the use of steam on low grade waste heat sources :

- Limited quantity of heat on high level restricts the evaporation pressure and superheating temperature and thus results in low cycle efficiencies.
- Low isentropic efficiency for single stage impuls steam turbine (60 65%)

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

- **1. ORC research objectives**
- 2. The Steam Cycle
- **3. The Organic Rankine Cycle**
- 4. Benchmark ORC vs Steam
- **5. Optimal use of a heat source**
- **6. Calculation tool**
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

- KINE CYCIE UNIVERSITEIT GENT Lid van de Associatie Universiteit Gent
- ORC uses similar technology as steam cycle : evaporator expander condenser
- But organic work fluid is being used instead of water/steam
- Advantages : smaller quantity of evaporation heat and no superheating needed

350 Evaporator Heat source Generator G Heat source 6 2 300 H Expander **Commonly used ORC** 7 Evaporator 250 work fluids : 3 Regenerator н Toluene Expander 200 (Cyclo)-pentane [°c] Condenser 5 4 Ammonia 150 ×5 \ Δ 2 Butane Feed pump Refrigerants 100 Regenerator (R245fa) Regenerator Solkatherm 50 4-5 Siloxanes Condenser (silicone oils) a = 0.75n a = 0.25a = 0.50 $\alpha = 1$ -1.4 -1.2 -1 -0.8 -0.4 -0.2 0.6 -0.6 0 0.2 0.4 0.8 s [kJ/kgK]

Properties ORC media vs. Steam

		T _{crit}	p _{crit}	Boiling Point	E _{evap} (1bar)
Fluid	Formula / name	[°C]	[bar]	[°C]	[kJ/kg]
Water	H20	373.9	220.6	100.0	2257.5
Toluene	C7H8	318.7	41.1	110.7	365.0
R245fa	C3H3F5	154.1	36.4	14.8	195.6
n-pentane	C5H12	196.6	33.7	36.2	361.8
cyclopentane	C5H10	238.6	45.1	49.4	391.7
Solkatherm	solkatherm	177.6	28.5	35.5	138.1
OMTS	MDM	291.0	14.2	152.7	153.0
HMDS	MM	245.5	19.5	100.4	195.8

- Water : wet fluid < > ORC media : dry fluids (positive slope saturated vapour)
- Dry fluids : no superheater required
- Application area in function of T_{crit} and p_{crit}
- High BP -> high specific volume at low T condensation
- Low evaporation heat -> high mass flow -> bigger feed pump

19/09/2011

StanMix, Hexamethyldisiloxane

- In simple ORC without regenerator : high quantity of sensible heat after expanders to reject, has negative effect on cycle efficiency.
- Dedicated design of ORC turbines have isentropic efficiency >85%

Toluene without regenerator

UNIVERSITEIT **GENT**

Lid van de Accociatie Universit

UNIVERSITEIT GENT

Lid van de Associatie Universiteit Gent

19/09/2011

ORC with regenerator: Sensible heat after expander is used to preheat ORC liquid fluid in regenerator

19/09/2011

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- 5. Optimal use of a heat source
- **6. Calculation tool**
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

Benchmark ORC vs Steam

Comparison application area ORC fluids and water/steam

Simulation assumptions in stationary conditions :

 Table 2 : ORC and steam cycle data

Cycle data		
Isentropic efficiency turbine	[%]	75
Pump efficiency	[%]	80
Tcond	[°C]	40
q steam outlet turbine	[%]	90
Inlet turbine ORC		Saturated
Inlet turbine steam		Superheated
T _{in} turbine	[°C]	60-500

- no pressure drops or energy losses taken into account
- compare theoretical gross cycle efficiency P_{mech} at turbine shaft
- efficiency gear box, generator not taken into account

Assumptions and remarks:

Comparison application area ORC fluids and water/steam

- Compare gross cycle efficiency of ORC with regenerator vs. simplified steam cycle (results presented on next graph)
- same T inlet turbine for steam cycle as for ORC cycle
- No restrictions on temperature level and thermal power of the heat source

Remarks :

- in reality cycle efficiency will be lower due to pressure drops and energy losses
- Isentropic efficiency depends on used expander type, all simulations are made for η isentropic of 75%
 - Dedicated designed ORC turbines : η isentropic >85%
 - Impuls turbine saturated steam : η isentropic <60%

Benchmark ORC vs Steam

Gross cycle efficiency ORC with regenerator vs simplified steam cycle

Benchmark ORC vs Steam

Conclusions ORC fluids:

- ORC fluids : higher efficiency achievable than simplified steam cycle (considering the assumptions and restrictions made)
- Temperature range ORC fluids limited < 300°C (without superheating)
- Efficiency ORC at 300°C comparable to simplified Steam cycle at 400°C, so ORC can be applied on waste heat sources at lower temperatures

UNIVERSITEIT GENT

- Heat source with T >400°C : steam cycle has higher performance
- Highest cycle efficiency achievable using ORC with toluene (theoretically)

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- 5. Optimal use of a heat source
- **6. Calculation tool**
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

Optimal use of a heat source

Influence temperature profile of a (waste) heat source

Temperature profile represents the thermal power available according to the temperature level

Calculation tool: optimal ORC and steam cycle

- Optimal power generated by generator
- Optimal evaporation pressure
- Influence considered parameters on efficiency
 - T_{in} heat source
 - T_{out} heat source
 - P_{th} heat source
 - ORC medium
 - T condensor
 - T evaporator
 - ΔT superheating
 - η_i turbine, pump
 - η_{m,e} pump, generator
 - Steam quality
 - With / without regenerator

ORC: Organic Fluid vs Water

Optimal use of a heat source

Comparison of temperature profiles and pinch points for a gas turbine exhaust and water (left) versus R114 (right) as working fluids

Lid van de Accociatie Universit

Optimal use of a heat source

Simulation data for example temperature profile :

Table 3 : Data case study temperature profile heat source

Parameter data				
Waste Heat source :		Components		
T profile	350 – 120 °C	$\eta_i \mathrm{pump}$	80%	
P _{th}	$3000 \text{ kW}_{\text{th}}$	η _{m,e} pump	90%	
Pinch	20°C	$\eta_{m,e}$ generator	90%	
ORC-cycle		Simplified steam	cycle	
medium	HMDS	T cond	40°C	
ΔT_{sup}	10°C	η _i turbine	70 - 80%	
T cond	40°C	q	93%	
η _i turbine	70 - 80%	ΔT_{sup}	$= f(p_{evap}, T_{cond},$	
			q, η _i turbine)	

Optimal use of a heat source

Optimal use of a heat source UNIVERSITEIT

Table 4 : Results case study temperature profile heat source

GEN1

		ORC with regenerator			
p _{evap}	[bar]	17.6		14	
η _i turbine	[%]	70	80	70	80
T _{sup}	[°C]	248	248	234	234
P _{th,reco}	$[kW_{th}]$	2388	2452	2479	2540
P _{gen,bto}	[kW _e]	509	578	506	574
$\eta_{cycle,bto}$	[%]	21.3	23.6	20.4	22.6
P _{gen,nto}	[kW _e]	487	556	488	556
η _{cycle,nto}	[%]	20.4	22.7	19.7	21.9
Case		1	2	3	4

Table summarizes results for ORC with HMDS for different parameters Realistic expected ORC power (η_i turbine = 80%) : >500 kW (Example : Turboden HR 6 : 2850 kW_{th} – 545 kW_e)

Table 4 : Results case study temperature profile heat source

		Simplified steam cycle					
p evap	[bar]	6		12		18	
η _i turbine	[%]	70	80	70	80	70	74
T _{sup}	[°C]	219	267	272	330	305	329
P _{th,reco}	$[kW_{th}]$	2737	2715	2386	2357	2134	2121
P _{gen,bto}	[kWe]	440	509	442	509	426	450
N _{cycle,bto}	[%]	16.1	18.7	18.5	21.6	19.9	21.2
P _{gen,nto}	[kW _e]	439	508	441	508	424	449
$\eta_{cycle,nto}$	[%]	16.0	18.7	18.5	21.5	19.9	21.2
Case		5	6	7	8	9	10

Table summarizes results for steam cycle with different parameters Realistic expected power simplified steam cylce : ~440 kW_e (~ -10 à -15% ORC) (η_i turbine = 70%)

Optimal use of a heat source

Some conclusions for case study on temperature profile heat source :

- ORC can be operated even a with low evaporation pressure on low grade heat sources, and still achieve an acceptable cycle efficiency compared to a (simplified) steam cycle
- ORC's require higher mass flows, and therefore bigger feed pumps which have a negative impact on net electric power
- The heating curves of ORC's can be better matched to the temperature profile of a low grade heat source, resulting in a higher cycle efficiency and in a higher recovery ratio for the thermal power.

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- **5. Optimal use of a heat source**
- 6. Calculation tool
- 7. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

Calculation Tool

Tools :

- Calculation tool for cycle efficiency and generated power for ORC
- Calculation tool for cycle efficiency and generated power for steam cycle
- Calculation tool for optimal net generated power for any given temperature profile of a waste heat source

Tools output :

- Charts with influence of all parameters on cycle efficiency and generated power
- Optimal heating profile for ORC and steam cycle matching any heat source (optimal T evaporator, p evaporator, T superheating)
- Automatic generation of QT-diagram
- Automatic representation of ORC and steam cycle on Ts-diagram

• Influence charts for all parameters on cycle efficiency and generated power

Calculation Tool

• Optimal heating profile for ORC and steam cycle matching any heat source (optimal T evaporator, p evaporator, T superheating)

• Automatic presentation of ORC and steam cycle on Ts-diagram

ORC 2011 First International Seminar on ORC Power Systems In memory of Prof. G. Angelino

- **1. ORC research objectives**
- 2. The Steam Cycle
- 3. The Organic Rankine Cycle
- 4. Benchmark ORC vs Steam
- **5. Optimal use of a heat source**
- **5. Calculation tool**
- 6. Conclusions

22 - 23 September 2011 Aula Conference Center TU Delft, The Netherlands

Conclusions

ORC

Pro:

- low t $^{\circ}$ heat sources usable
- lower pressure in the system
- less complex installation
- no superheater needed
- easy to operate ("one button" start)
- small scale (from 0,3 kWe) available
- better part load efficiency

Contra:

- often thermal oil intermediate
- working fluid probably toxic, flammable

Steam cycle

Pro:

- "standard" technology
- more flexibility in power/heat ratio
- water/steam as working fluid
- direct evaporation in HR exchanger

Contra:

- needs higher t $^{\circ}$ sources (from ca 150 $^{\circ}$ C)
- more complex installation (water treatment, deaerator...)
- higher system pressure
- only "higher" power range (from ca 300 kWe)

Thanks to all of you for your attention

Time for questions...discussion ?

ing. Bruno Vanslambrouck

HOWEST, division of Electromechanics Research Group on Thermodynamics Graaf Karel de Goedelaan 5, B-8500 Kortijk

Mail: <u>bruno.vanslambrouck@howest.be</u> Tel: +32 56 241211 of +32 56 241227 (dir)

www.howest.be

www.orcycle.eu