THREE-DIMENSIONAL RANS SIMULATION OF A HIGH-SPEED ORGANIC RANKINE CYCLE TURBINE

John Harinck, David Pasquale, Rene Pecnik, Piero Colonna

TU Delft, Università di Brescia

ORC 2011 Seminar Delft, September 22-23, 2011

Outline

- Introduction: ORC turbines
- Fluid dynamic analysis of ORC turbines
- Example and results
- Possible design improvements
- Outlook and conclusions

Advantages of organic fluid for turbine

Optimal turbine for:

- \geq low capacity (few kW_e to 1 2 MW_e)
- >low T heat source (150 450°C)

Example for heat source of T=305 °C:

Advantages of organic fluid for turbine

Optimal turbine for:

- \geq low capacity (few kW_e to 1 2 MW_e)
- >low T heat source (150 450°C)
- Select optimal fluid for given power level
- High efficiency turbine \implies high efficiency cycle (20% at 325°C TIT)
- Good part-load efficiency
- Dry expansion
- Simple configuration
- Lubricant

Flow analysis/design of ORC turbines

Volumetric deviation from simple ideal gas law in *T*-*s* diagram of an organic fluid

TUDelft

Differences due to (inaccurate) models

Example for a simulated expansion in an ORC stator:

	Flow solvers	Turbulence models	Accurate thermophysical models	Ideal gas law
Mass flow	2%	1%	1%	15%
Efficiency	8%	2%	5%	n.a.
Oulet velocity	3%	1%	0%	50%
Outlet flow angle	2°	1°	0°	2°
Specific work	n.a.	n.a.	6%	n.a.

Coupling with accurate properties

• Options:

1. directly with accurate thermodynamic models

e.g., via FluidProp (<u>www.fluidprop.com</u>)

2. with polynomials fitted to tables

- 3. interpolated from look-up tables containing property values
- Accuracy comes at higher computational cost

Progress in ORC turbine design

• Preliminary design / dimensioning:

based on empirical relations for low-expansion-ratio turbines

• Fluid dynamic design of nozzle/blade shape:

Simpler approach	Nowadays possible
 Inviscid flow solver Approximate thermodynamic model 2D Stator only 	 Viscous turbulent solver Highly accurate multiparameter equations of state 3D Complete turbine

3D turbulent RANS simulation of ORC turbine

An example

ORC:

- Waste heat: T > 350 °C, 450-900 kW_{th}
- Power output: 60-165 kW_e
- Working fluid: Toluene

Turbine:

- Single-stage radial low-reaction turbine
- High pressure ratio (P_{in}/P_{out}>100),
- Inlet in dense gas region (40% volumetric deviation from ideal gas)
- High rotational speed (18000 28000 rpm)

3D turbulent RANS simulation of ORC turbine

Steps towards current methodology

1	Euler	2D*	stator
2	Euler	3D	stator
3	Euler	Throughflow	stator-rotor
4	RANS	2D*	stator
5	RANS	3D	stator
6	RANS	3D	stator-rotor-diffuser

*If geometrically allowable

3D turbulent RANS simulation of ORC turbine

Modeling approach

- RANS
- Look-up table based on highly accurate NIST RefProp multiparameter equation of state
- Shear Stress Transport k ω turbulence model
- Adiabatic, steady-state flow
- Ansys CFX 13
- Stator, rotor and diffuser

Mesh

Results

Stator-rotor

Results Rotor inlet (midspan)

Options for further design improvement

Current design:

- Generally good turbine performance ($\eta_{is} \approx 70\%$)
- Arrangement of linear nozzles ⇒ flow impingement ⇒ shocks ⇒ nonuniform rotor inflow angle

Improvements to make it even better:

• Curving/bending stator nozzles

 $\bigvee \implies \bigvee$

- Smaller stator trailing edge angle
- Geometry refinement using optimization methods coupled to CFD

Outlook

- Validation with experimental measurements
- Automatic shape optimization
- Unsteady flow analysis
- Uncertainty quantification
- Coupling multi-level analyses: cycle model + turbine CFD
- Virtual prototyping

Conclusions

- Demonstration of state of the art of ORC turbine fluid dynamic performance analysis
- Characteristics of ORC turbines:
 - expansion in dense-gas region, requiring accurate thermodynamic properties
 - Supersonic flow, shocks, effect on rotor inflow
- Options for further design improvement
- Outlook

Thank you

Challenge the future 18