APPLICATION OF AN ORGANIC RANKINE CYCLE FOR RECOVERY OF LOW-GRADE WASTE HEAT IN A (WET) BIOMASS SUPERCRITICAL WATER GASIFICATION SYSTEM

SUMMARY: Green platform chemicals and biofuels(s) can be produced from wet biomass pretreatment integrated with supercritical water gasification. This is a novel biorefinery concept. However, the utilization of low grade heat to improve economics has been a challenge. This article describes a process model and simulations in which an Organic Rankine Cycle (ORC) was combined with Supercritical water gasification (SCWG) system. The working fluid used in this study is ${\rm CO_2}$. It has many advantages, low cost, low toxicity, is nonflammable and has no environmental impact. In this modeling, water temperature in the range of 170 – 200 $^{\circ}{\rm C}$ and a flow of 7200 kg/hr was used as the low-grade heat source. ${\rm CO_2}$ is biomass derived in the same process which can be produced about 1300 kg/hr. Aspen PlusTM process modeling software is used to model this system. The efficiency of the process is evaluated.

Table I: Cycle data Table II: Thermo-physical properties of working fluids

Cycle data	
Isentropic efficiency turbine	80 %
Pump efficiency	90 %
Inlet turbine (CO ₂)	Superheat
Inlet turbine (Toluene)	Saturated
Flow rate (CO ₂)	1300 -36000 kg/h
Flow rate (Toluene)	38248 kg/h
Temperature (High)	180 °C
Water flow rate	7200 kg/h
Temperature (Low)	25 ℃

Working fluid properties		
Properties	Carbon dioxide	Toluene
Formula	CO ₂	C ₇ H ₈
MW (g/mol)	44.01	92.14
T critical (°C)	31.06	318.6
P critical (bar)	73.84	41.06
Boiling point (°C)	-57	110.6

power output. The working fluid used as CO₂ in power cycle, is biomass derived in the same process. It has many advantages, low cost, low toxicity, nonflammable and no environmental impact.

Work net of CO₂ flow rate at 1300 kg/h in CO₂ power cycle is relatively low, therefore limiting the CO₂ production in this process. However, the increasing of work net can be increased by employing CO₂ flow rate.

> This research was supported by Faculty of Engineering At Kamphaeng Saen Campus, Kasetsart University, Thailand

W.Hongsiri, Dr. Ir. W. de Jong

Leeghwaterstraat 44, 2628 CA Delft, The Netherlands

e-mail: Wiebren.dejong@tudelft.nl

