

SUPERCRITICAL CO₂ POWER CYCLE DEVELOPMENT SUMMARY AT SANDIA NATIONAL LABORATORIES

Steven A. Wright*, Thomas M. Conboy, and Gary E. Rochau

International Conference on ORC Power Systems Delft University of Technology 22 – 23 September 2011

> Sandia National Laboratories Advanced Nuclear Technology 505 845 3014, <u>sawrigh@sandia.gov</u>

Goals of Presentation

- What is a Supercritical CO₂ Brayton Cycle?
- Economic and Environmental Benefits of S-CO₂ Power Systems
 - Economic and Environmental
 - All Heat Sources
- Scaling Study Results (10 MWe)
 - 10 MWe Development and Demonstration Program Status of Development Effort
 - Commercial and Government
- DOE Gen-IV S-CO₂ Research Program
- Summary and Conclusions

What is a Supercritical CO₂ Brayton Cycle? How does it work?

High Efficiency at Lower Temp (Due to Non-Ideal Gas Props)

High Density Means Very Small Power Conversion System Non-Ideal Gas Means Higher Efficiency at Moderate Temperature

Supercritical CO₂ Cycle Applicable to Most Thermal Heat Sources

SNL has Funding or Research Agreements with most Agencies Representing these Heat Sources

Key Features to a Supercritical Brayton Cycle

- Peak Turbine Inlet Temp is well matched to a Variety of Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)
- Efficient ~43% 50% for 10 300 MW_e Systems
 - 1000 F (810 K) ~ 538 C Efficiency = 43 %
 - 1292 F (1565 K) ~ 700 C Efficiency =50%
- Standard Materials (Stainless Steels and Inconels)
- High Power Density for Conversion System
 - ~30 X smaller than Steam or 6 X for Helium or Air
 - Transportability (Unique or Enabling Capability)
 - HX's Use Advanced Printed Circuit Board Heat Exchanger (PCHE) Technology
- Modular Capability at ~10-20 MWe
 - Factory Manufacturable (10 MW ~ 2.5m x 8m)
- Advanced Systems (Increase Eff 5-8% points) & Dry

Modular & Self Contained Power Conversion Systems ~ 1.5 m x 8 m

Good Efficiency at Low Operating Temps Standard Materials, Small Size Modular & Transportable AFFORDABLE and FABRICABLE

Advanced Heat Exchangers Meggit / Heatric Co.

GenIV S-CO2 Brayton Cycle

Heat Source Operating Temperature Range & SCO₂ Power Conversion Efficiency for Various Heat Sources

S-CO₂ Power Conversion Operating Temperatures are Applicable for All Heat Sources Optimum Design Requires Different Approaches for Each Heat Source Supercritical Fluid Technology has Untapped Growth Potential

S-CO₂ Power Cycle Economic and Environmental Benefits

- DOE has invested 5 years and ~ \$10-11 M on Proof-of-Principle S-CO₂ Power Systems
- The Potential Economic and Environmental Benefits of S-CO₂ Power Systems are Large
 - Useful with All Heat Sources
 - Wide number of Applications (Bottoming Cycles, Solar, Waste Heate, Marine, Nuclear..)
 - Economic Benefits Mean 100's of Billions of Dollars
 - Environmental Benefits are also Large
 - Increased Efficiency
 - Significant Efficiency improvements for Carbon Capture and Sequestration with Advanced Coal Combustion
 - Dry Cooling is possible for all heat sources
- Development is Still Needed (especially at larger scales)
 - Heat Source and Power Cycle are Linked (Cycle/Design Research)
 - Heat Exchanger Development is Needed
 - Micro-Channel Design Costs, Nuclear Certification, Packaging, Failure Modes, Cost Reductions
 - Commercial Engineering and Demonstration is Needed using Industrial Hardware (~10 MW_e)

Potential Markets

- Pulverized Coal Steam Plant Replacement Efficiency upgrade Efficiency to >50%
 - X100's of plants refurbished
- PC with CCS Demo System
- Solar Power Towers
 - Renewable Portfolio Standard
 - 6 Plants planned (50-100 MW_e each)
- Solar Troughs (Needs cycle optimized for 400 C)
- Integrated Bio-Fuel/SCO₂ Plant (Carbon Reduction Requirements)
- Military Applications (Fixed Base and Marine)
- Commercial Marine (Gas Fired Turbines)
- Geo-Thermal Wells
- Waste Heat Applications
 - Gas Turbine Bottoming Cycle
 - Supercritical Water Oxidation
- Nuclear Reactors
 - (LWR, SFR, GCR, Molten Salt Reactors)

Scaling Study

Scaling Rules and Ranges of Application for Key Brayton Cycle Turbomachinery Components

High Technology High \$/kWe Commercial Technology Lower \$/kWe

10 MWe allows use of Commercial Technologies

Approximate Shaft Speed and Turbine Wheel Diameter

Printed Circuit Heat Exchanger Scaling Rules

	Actual			Specific Cos	ts
Cost	kW	lb	lb/kW	\$/lb	\$/kW _{th}
60000	510	492	0.96	122	118
106000	1600	551	0.34	192	66
210000	2300	1410	0.61	149	91
Average			0.64	154	92

Need 50% reduction (Materials, Scale, & Advanced Manuf.) to reach 200\$/ kWe

END AIEM

Concentrated Solar Applications

Small or Big ? 1-10 MWe or 100 MWe

or centralized s-CO2 power block with salt receivers?

DOE Supercritical CO₂ Program Description

- DOE Gen-IV S-CO₂ Research Program
 - Testing
 - Brayton and Compression Loop Descriptions
 - Compressor Performance Mapping
 - Power Generation in Simple Heated Brayton Cycle
 - Mixtures
 - Condensation Cycles
 - Thrust Bearing Heating
 - Sealing Technology
 - Modeling
 - Ability of Sandia S-CO₂ Brayton Loop to Reproduce Other Cycles
 - Summary and Conclusions

Key Technology Turbo- Alternator Compressor Design Permanent Magnet Generator with Gas Foil Bearings ~24" Long by 12" diameter

125 kWe at 75,000 rpm

GenIV-Supercritcal CO₂ Brayton Cycle Loop

Supercritical S-CO₂ Brayton Cycle DOE-Gen IV

Supercritical CO₂ Brayton Loop Final Design, Currently Existing, and Alternative Layouts

Power Generation in Upgraded S-CO2 Simple Heated Recuperated Brayton Loop

Measured T-S Diagram GenIV_110714_0952

T-s Diagram DOE SML Test "GenlV_110714_0952" At 5770 [s] into the test Generated Power = 15716 [W]

Loss Measurements C-2 Compressor T-2 Turbine

S-CO_{2:} Summary and Conclusions

Potential for S-CO₂ Power Conversion Systems to Improve Economics and Environmental Issues on a Large Scale

- 1) Dry Cooling
- 2) CCS
- 3) Improved Efficiency

For All Types of Heat Sources

Sandia Research Program Summary

- Sandia/DOE have two operating S-CO₂ test loops
 - Research Compression Loop
 - Reconfigurable Brayton Loop
- Measured Main Compressor Flow Maps
 - Overall Good Agreement with Mean-Line Predictions of the Performance Maps
 - Over a wide range of operating Temperature, pressure, and density
- Using Brayton loop Configuration available in FY2010
 - Heater power was limited to 520/390 kW
 - Produced Power in simple heated recuperated Brayton loops (Main TAC and Re-Comp TAC)
 - Cold Startup, Breakeven, Power Production (6% efficiency and 20 kWe), Power/RPM Operation Maps
- Condensation in Tube and Shell and PCHE heat exchangers
 - Improved Efficiency
- Test (critical point) were performed with mixtures of CO₂, CO₂-Neon, CO₂ SF₆, CO₂-Butane
 - Can Increase or decrease T_{crit}
 - Improved Efficiency (especially for low temperature applications)
- Thrust Gas Foil Bearing Tests and Modeling
 - Goal : higher thrust load capability and lower frictional power
- Natural Circulation
 - S-CO₂ Gas Fast Reactor
 - C3D CFD Model development
- Collaborations with Industry + Larger Scale System Development

Path Forward

- Path Forward
 - Continue Testing of Proof-of-Principle Small Loop
 - Work/Collaborate with industry to develop S-CO₂ System for any heat source at the 10 MW_e sized system
 - Propose for First Nuclear Applications
 - Use with LWRs
 - Wet and Dry Cooling
 - 37% and 30% Efficiencies
 - Develop S-CO2 Systems for Nuclear Technology
- Begin Seeking Gov. Funded 10 MWe S-CO2 power system development to support FE, EERE, NE, others
 - Useful for all heat sources (Nuclear, Solar, Fossil, Geothermal)
 - Numerous early non-nuclear Products (Marine, Fossil, Solar, Geo, Waste Heat, Heat Storage and Transport)
 - Improved the economic and environmental benefits for all systems
 - Dry Cooling is Possible
 - Required for some heat sources
 - Power Cycle modifications are required

