

THERMODYNAMIC ORC CYCLE DESIGN OPTIMIZATION FOR MEDIUM-LOW TEMPERATURE ENERGY SOURCES

M. Astolfi M. C. Romano P. Bombarda E. Macchi

- 1. Thermodynamic optimization
 - Extended analysis (source, fluid, cycle)
 - General trend in observed variables
 - Global rules in fluid and cycle selection
- 2. Component efficiency prediction
 - Pump : $f(V, P_{el})$
 - Turbine : $f(V_{out}/V_{in}, Ns, SP, P_{el})$
- 3. Component cost prediction

 - Pump
 - Turbine

• Heat exchangers (*Aspen HTFS*+, *Thermoflex*) (in house correlation) (in house correlation)

4. LCOE economic optimization for a given thermal source

Methodology

Matlab[®] code + Nist Refprop[®] database

60 Fluids			6 cycle configurations		
Hydrocarbon	17			superheated	regenerative
HFC	13	Su	Subcritical		non regenerative
		Ju		saturated	regenerative
					non regenerative
Siloxanes	8	Cum	overitical		regenerative
Others	15	Sup	erchucal		non regenerative

> 2 heat sources

Geothermal Brine	Exhaust Gases
200 kg/s	2 kg/s
4186 kJ/kg	1000 kJ/kg
[100 °C - 200 °C]	[200 °C - 400 °C]
70°C	120°C

POLITECNICO DI MILANO

M. Astolfi

Pressure drops	 Δp/p_{in} % Δp ΔT 	vapour phase liquid phase two phase
Temperature differences	 ▲<i>Tpp</i> ▲<i>Tpp</i> ▲<i>Tap</i> ▲<i>Tap</i> 	PHE Condenser Condenser Recuperator
• Efficiencies	 η_{is} η_{idr} η_{gen,org, el} 	Turbine Pump

- Discretization of each heat exchanger: *ATpp & US*
- No liquid along the expansion as constrain

Optimization variables $p_{in,Turbine}$ - ΔT_{ap}

POLITECNICO DI MILANO

$\mathbf{Y}_{\mathrm{in,GEO}} = 140^{\circ}\mathrm{C}$

T_{in,GEO} = 140°C limited sensitivity to assumption

Geothermal source - P_{net}/m_{GEO} - η_{II}

T_{in,GEO} = 160°C fluid molecular complexity

R152a

Perfluorobutane

M. Astolfi

Geothermal source - US_{TOT}/P_{net}

- US_{TOT}/P_{net} decrease for higher T_{in_GEO}
- Lower investment cost vs lower power production: Economic optimization is necessary

Geothermal source - SP - Ns

- Well designed turbines for all the optimized cycles
- Good values of SP
- Ns values near to optimum (0.1)

$$SP = \frac{\sqrt{\dot{V}_{out}}}{\sqrt{\Delta h}} \quad Ns = N \frac{\sqrt{\dot{V}_{out}}}{\Delta h^{3/4}}$$

N = 50Hz

Geothermal brine vs exhaust gases

- Similar trends
- Competitive efficiency for saturated cycle at higher T_{in}

Exhaust gas - P_{net}/m_{GEO} - η_{II}

- 200 °C With 3000 rpm non feasible design of turbine 300 °C is obtained \bigcirc 400 °C
- Low SP and Ns below the optimal value
- High speed turbines have to be adopted

 \bigcirc

- 1. For thermodynamic optimization at least 2 parameters have to be considered: $p_{in,Turbine} - \Delta T_{ap}$
- 2. Global considerations:
 - In reduced variables all the analysis give similar results
 - Optimal fluid has a $T_{crit} \approx 0.9-0.95 T_{in}$
 - Higher efficiency using complex fluids are obtained
 - Optimal cycle are Supercritic with $P_{rid} \approx 1-1.1$
 - US_{TOT}/P_{net} decrease with T_{in} thanks to the higher η_{II}
- 3. Other considerations:
 - T_{amb} and T_{rej} have little influence on fluid choice
 - Feasibility of turbine design and actual efficiency could influence fluid and cycle selection and should be carefully considered together with heat transfer coefficients and fluid cost

Thank you for your attention

POLITECNICO DI MILANO

