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Chapter: Expanders for ORC Applications

Motivation & Current Activities

Motivation of the proposed work:

Improvement of the performances of Organic Rankine Cycles
(ORC) via better turbine design calls for experimental studies
on ORC turbine flows

TROVA@PoliMI

is designed to provide experimental data for flows typical of
ORC turbine blade passages

is a blow-down facily; expansion occurs through a test section:
straight axis, planar, convergent-divergent nozzle

Working fluid: siloxane MDM
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TROVA@PoliMI

Presentation at 11.20 Senaatszaal. . .

TMD Cycle

4 - High Pressure Vessel

6 - Nozzle Inlet

7 - Nozzle Outlet

8 - Low Pressure Vessel

Design issue

The understanding of the
gasdynamics of supercritical
and close-to-critical flows is
incomplete!
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Nozzle design for ORC applications

Expansion occurs in highly non-ideal gas conditions

Real-gas
thermodynamic
models

High compressibility

Non-ideal dependence
of the speed of sound c
on specific volume v at
constant T

Dense gas dynamics
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Fundamental derivative of gasdynamics

Phil Thompson, J. Fluids Mech. 1971

Fundamental derivative Γ

Γ = 1 + ρ
c

(

∂c
∂ρ

)

s

c sound speed
ρ density
s entropy p.u.m.
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Goal of the research

Goal of the research

To design the divergent section of
subsonic-supersonic nozzles operating
in the dense gas regime

Assumptions

Flow is two-dimensional, flow is expanding from uniform
reservoir conditions into uniform ambient conditions,
high-Reynolds number flow, no flow separation, no shock waves,
adiabatic walls
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Chapter: Governing equations and design procedure

Mathematical model

Full potential equation

Compressible non-viscous isentropic irrotational flow
(

Φ2
x − c

2
)

Φxx + 2ΦxΦyΦxy +
(

Φ2
y − c

2
)

Φyy = 0

with Φ ∈ R, u = Φx and v = Φ flow velocities, w2 = u2 + v2.

Thermodynamic closure

c = c(s, h) = c(sr, hr − w2/2) ?

StanMix and RefProp libraries in FluidProp:
- Stryjek-Vera Peng-Robinson cubic EOS (PRSV)
- Span Wagner multiparameter EOS (SW)
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Design procedure

Method Of Characteristics (MOC) (Zucrow & Hoffman, 1977)
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Turning region (IKF)

Inverse MOC from exit
characteristic KF
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Recovery of perfect gas results
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Chapter: Design of the test nozzle

Nozzle design for MDM

Reservoir conditions

P0 = 25 bar
T0 = 310.3 ◦C

Expansion ratio

β = 25

Design conditions

Exit Mach number
Md = 2.25
Velocity vector parallel
to x axis
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Nozzle design for MDM
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Nozzle design for different fluids

Fluids

D4, D5, D6,
MM, MDM, MD2M
R245fa, Toluene,
Ammonia
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Conclusions

A nozzle design tool for dense gases was developed and
validated against ideal gas results using the the cubic
PRSV EoS and the multi-parameter Span-Wagner EoS in
FluidProp

If the expansion process occurs in region where Γ is less
than its dilute-gas value, then resulting nozzles are longer,
in accordance with the one-dimensional theory.

For increasing molecular complexity of the fluid, Γ
decreases and the nozzle length increases.

Caution: normalized mass flow varies dramatically for the
diverse operating conditions
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Thank you!
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